Bunch-Kaufman Pivoting for Partially Reconstructible Cauchy-like Matrices, with Applications to Toeplitz-like Linear Equations and to Boundary Rational Matrix Interpolation Problems

نویسندگان

  • Thomas Kailath
  • Vadim Olshevsky
چکیده

In an earlier paper [GKO95] we exploited the displacement structure of Cauchy-like matrices to derive for them a fast O(n) implementation of Gaussian elimination with partial pivoting. One application is to the rapid and numerically accurate solution of linear systems with Toeplitzlike coe cient matrices, based on the fact that the latter can be transformed into Cauchy-like matrices by using the Fast Fourier, Sine or Cosine Transforms. However symmetry is lost in the process, and the algorithm of [GKO95] is not optimal for Hermitian coe cient matrices. In this paper we present a new fast O(n) implementation of symmetric Gaussian elimination with partial diagonal pivoting for Hermitian Cauchy-like matrices, and show how to transform Hermitian Toeplitz-like matrices to Hermitian Cauchy-like matrices, obtaining algorithms that are now twice as fast as those in [GKO95]. Numerical experiments indicate that in order to obtain not only fast but also numerically accurate methods, it is advantageous to explore the important case in which the corresponding displacement operators have nontrivial kernels; this situation gives rise to what we call partially reconstructible matrices, which are introduced and studied in the present paper. We extend the transformation technique and the generalized Schur algorithms ( i.e., fast displacement-based implementations of Gaussian elimination ) to partially reconstructible matrices. We show by a variety of computed examples that the incorporation of diagonal pivoting methods leads to high accuracy. We focused in this paper on the design of new numerically reliable algorithms for Hermitian Toeplitz-like matrices. However, the proposed algorithms have other important applications; in particular, we brie y describe how they recursively solve a boundary interpolation problem for J-unitary rational matrix functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pivoting for Structured Matrices and Rational Tangential Interpolation

Gaussian elimination is a standard tool for computing triangular factorizations for general matrices, and thereby solving associated linear systems of equations. As is well-known, when this classical method is implemented in finite-precision-arithmetic, it often fails to compute the solution accurately because of the accumulation of small roundoffs accompanying each elementary floating point op...

متن کامل

A Superfast Algorithm for Confluent Rational Tangential Interpolation Problem via Matrix-vector Multiplication for Confluent Cauchy-like Matrices∗

Various problems in pure and applied mathematics and engineering can be reformulated as linear algebra problems involving dense structured matrices. The structure of these dense matrices is understood in the sense that their n2 entries can be completeley described by a smaller number O(n) of parameters. Manipulating directly on these parameters allows us to design efficient fast algorithms. One...

متن کامل

TR-2013010: Transformations of Matrix Structures Work Again II

Matrices with the structures of Toeplitz, Hankel, Vandermonde and Cauchy types are omnipresent in modern computations in Sciences, Engineering and Signal and Image Processing. The four matrix classes have distinct features, but in [P90] we showed that Vandermonde and Hankel multipliers transform all these structures into each other and proposed to employ this property in order to extend any suc...

متن کامل

Transformations of Matrix Structures Work Again II ∗

Matrices with the structures of Toeplitz, Hankel, Vandermonde and Cauchy types are omnipresent in modern computations in Sciences, Engineering and Signal and Image Processing. The four matrix classes have distinct features, but in [P90] we showed that Vandermonde and Hankel multipliers transform all these structures into each other and proposed to employ this property in order to extend any suc...

متن کامل

A Superfast Algorithm for Toeplitz Systems of Linear Equations

In this paper we develop a new superfast solver for Toeplitz systems of linear equations. To solve Toeplitz systems many people use displacement equation methods. With displacement structures, Toeplitz matrices can be transformed into Cauchy-like matrices using the FFT or other trigonometric transformations. These Cauchy-like matrices have a special property, that is, their off-diagonal blocks ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995